South Africa’s MeerKAT Peers Deep Into The Universe

Press release provided by the South African Radio Astronomy Observatory.

First radio image of distant Milky Way-like galaxies reveals star formation history of the Universe.

South Africa’s MeerKAT peers deep into the Universe
MeerKAT image of radio galaxies: Thousands of galaxies are visible in this radio image covering a square degree of sky near the south celestial pole, made by the MeerKAT radio telescope array in South Africa. The brightest spots are luminous radio galaxies powered by supermassive black holes. The myriad faint dots are distant galaxies like our own Milky Way, too faint to have been detected before now, which reveal the star-formation history of the universe. Most galaxies are visible in the central part of the image, where the telescope is most sensitive. Credit: SARAO; NRAO/AUI/NSF

Look at this new radio image covered with dots, each of which is a distant galaxy! The brightest spots are galaxies that are powered by supermassive black holes and shine bright in radio light. But what makes this image special are the numerous faint dots filling the sky. These are distant galaxies like our own that have never been observed in radio light before.

To learn about the star-formation history of the universe, we need to look back in time. Galaxies throughout the universe have been forming stars for the past 13 billion years. But most stars were born between 8 and 11 billion years ago, during an era called “cosmic noon”.

It has been a challenge for astronomers to study the faint light coming from this era. Optical telescopes, like SALT in Sutherland, can see very distant galaxies, but new stars are largely hidden inside dusty clouds of gas. Radio telescopes can see through the dust and observe the rare, bright “starburst” galaxies, but until now have not been sensitive enough to detect the signals from distant Milky Way-like galaxies that are responsible for most of the star formation in the universe.

An international team of astronomers, using the South African Radio Astronomy Observatory (SARAO) MeerKAT telescope near Carnarvon in the Northern Cape, recently made the first radio observation sensitive enough to reveal these galaxies. “To make this image, we selected an area in the Southern Sky that contains no strong radio sources whose glare could blind a sensitive observation,” said Tom Mauch of SARAO in Cape Town, who led the team who has had their results accepted for publication in The Astrophysical Journal.

The team used the 64 MeerKAT dishes to observe this area for a total of 130 hours. The resulting image shows a region of the sky that is comparable in area to five full Moons, containing tens of thousands of galaxies.

South Africa’s MeerKAT peers deep into the Universe 2
Composite of radio galaxies and MeerKAT telescope: Thousands of galaxies are visible in this radio image covering a square degree of sky near the south celestial pole, made by the MeerKAT radio telescope array (foreground) in the South African Karoo semi-desert. The brightest spots are luminous radio galaxies powered by supermassive black holes. The myriad faint dots are distant galaxies like our own Milky Way, too faint to have been detected before now. Because radio waves travel at the speed of light, this image is a time machine that samples the star formation history of the universe. Credit: SARAO; NRAO/AUI/NSF

“Because radio waves travel at the speed of light, this image is a time machine that samples star formation in these distant galaxies over billions of years,” explained co-author James Condon of the National Radio Astronomy Observatory in the USA. “Because only short-lived stars that are less than 30 million years old send out radio waves, we know that the image is not contaminated by old stars. The radio light we see from each galaxy is therefore proportional to its star-forming rate at that moment in time.”

The astronomers want to use this image to learn more about star formation in the entire universe. “These first results indicate that the star-formation rate around cosmic noon is even higher than was originally expected,” said Allison Matthews, a PhD student at the University of Virginia. “Previous images could only detect the tip of the iceberg, the rare and luminous galaxies that produced only a small fraction of the stars in the universe. What we see now is the complete picture: these faint dots are the galaxies that formed most of the stars in the universe.”

“MeerKAT is the best radio array in the world for studies like this one because it is the first to use such a large number of extremely low-noise clear-aperture dishes,” explained SARAO Chief Technologist Justin Jonas. As a result, the MeerKAT image (nicknamed “DEEP2”) is more sensitive to distant star-forming galaxies than any previous view of the radio sky.

 

PAPER

This research is presented in an article titled “The 1.28 GHz MeerKAT DEEP2 Image,” by T. Mauch et al., accepted for publication in The Astrophysical Journal.

MeerKAT, originally the Karoo Array Telescope, is a radio telescope inaugurated in 2018 consisting of 64 antennas spread over a diameter of eight kilometres in the Northern Cape province of South Africa. It is the most sensitive telescope of its kind in the world and is a precursor to the Square Kilometre Array (SKA) radio telescope, to be built in South Africa and Australia within the coming decade.

The MeerKAT telescope is operated by the South African Radio Astronomy Observatory, which is a facility of the National Research Foundation, an agency of the Department of Science and Innovation.

The article was originally published by the South African Radio Astronomy Observatory



© Space in Africa 2020

All rights reserved. Any redistribution or reproduction of part or all of the contents in any form is prohibited. You may not, except with our express written permission, distribute or commercially exploit the content. Nor may you transmit it or store it in any other website or other forms of electronic retrieval system.



New Report: The African space economy is now worth USD 7 billion and is projected to grow at a 7.3% compound annual growth rate to exceed USD 10 billion by 2024. Read the executive summary of the African Space Industry Report - 2019 Edition to learn more about the industry. You can order the report online.


LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.